Duality for composed convex functions with applications in location theory
نویسندگان
چکیده
In this paper we consider, in a general normed space, the optimization problem with the objective function being a composite of a convex and componentwise increasing function with a vector convex function. Perturbing the primal problem, we obtain, by means of the Fenchel-Rockafellar approach, a dual problem for it. The existence of strong duality is proved and the optimality conditions are derived. Using this general result, we introduce the dual problem and the optimality conditions for the single facility location problem in a general normed space in which the existing facilities are represented by sets of points. The classical Weber problem and minmax problem with demand sets are studied as particular cases of this problem.
منابع مشابه
SOME PROPERTIES FOR FUZZY CHANCE CONSTRAINED PROGRAMMING
Convexity theory and duality theory are important issues in math- ematical programming. Within the framework of credibility theory, this paper rst introduces the concept of convex fuzzy variables and some basic criteria. Furthermore, a convexity theorem for fuzzy chance constrained programming is proved by adding some convexity conditions on the objective and constraint functions. Finally,...
متن کاملOptimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملHermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions
Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.
متن کاملApplications of subordination theory to starlike functions
Let $p$ be an analytic function defined on the open unit disc $mathbb{D}$ with $p(0)=1.$ The conditions on $alpha$ and $beta$ are derived for $p(z)$ to be subordinate to $1+4z/3+2z^{2}/3=:varphi_{C}(z)$ when $(1-alpha)p(z)+alpha p^{2}(z)+beta zp'(z)/p(z)$ is subordinate to $e^{z}$. Similar problems were investigated for $p(z)$ to lie in a region bounded by lemniscate of Bernoulli $|w^{2}-1|=1$ ...
متن کاملFenchel’s duality theorem for nearly convex functions
We present an extension of Fenchel’s duality theorem to nearly convexity, giving weaker conditions under which it takes place. Instead of minimizing the difference between a convex and a concave function, we minimize the subtraction of a nearly concave function from a nearly convex one. The assertion in the special case of Fenchel’s duality theorem that consists in minimizing the difference bet...
متن کامل